Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 866: 161231, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36586678

RESUMO

The ammonia oxidation process driven by microorganisms is an essential source of nitrous oxide (N2O) and nitric oxide (NO) emissions. However, few evaluations have been performed on the changes in the community structure and abundance of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under substituting portion of chemical fertilizers with organic manure (organic substitution) and their relative contribution to the ammonia oxidation process. Here, five long-term fertilization strategies were applied in field (SN: synthetic fertilizer application; OM: organic manure; M1N1: substituting 50 % of chemical N fertilizer with organic manure; M1N4: substituting 20 % of chemical N fertilizer with organic manure; and CK: no fertilizer). We investigated the response characteristics of AOB and AOA community structures by selective inhibitor shaking assays and high-throughput sequencing and further explained their relative contribution to the ammonia oxidation process during three consecutive years of vegetable production. Compared to SN and M1N4, the potential of ammonia oxidation (PAO) was significantly reduced by 26.4 % and 22.3 % in OM and 9.5 % and 4.4 % in M1N1, resulting in N2O reductions of 38.9 % and 30.8 % (OM) and 31.2 % and 21.1 % (M1N1), respectively, and NO reductions of 45.0 % and 34.1 % (OM) and 40.1 % and 28.3 % (M1N1). RDA and correlation analyses showed that the soil organic carbon and ammonium nitrogen content increased while AOB gene abundance and diversity significantly decreased with increasing organic replacement ratio; however, the relative abundance of Nitrosomonas in AOB increased in OM and M1N1, which further demonstrates that AOB are the main driver in vegetable soils. Therefore, the appropriate proportion of organic substitution (OM and M1N1) could decrease the N2O and NO emissions contributed by AOB by affecting the soil physicochemical properties and AOB community structure.


Assuntos
Betaproteobacteria , Solo , Solo/química , Óxido Nítrico , Verduras , Nitrosomonas , Amônia/análise , Carbono , Esterco , Oxirredução , Archaea , Fertilizantes/análise , Microbiologia do Solo , Nitrificação
2.
Ecotoxicol Environ Saf ; 242: 113932, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914399

RESUMO

Chemical fertilization in excess and warming disrupt the soil microbes and alter resource stoichiometry, particularly in intensive vegetable soils, while the effects of these variables on the temperature sensitivity of soil organic carbon (SOC) decomposition (Q10) and SOC stability remain elusive. Thus, we collected six long-term vegetable soils along a climatic gradient to examine the microbial mechanisms and resource stoichiometry effects on fluctuations in Q10 and SOC stability induced by warming and fertilization from vegetable soils. Our results showed that the SOC decomposition was dominated by microbes and regulated by stoichiometry. Compared to cold sites, higher Q10 of SOC decomposition was observed in warm sites, accompanied by lower enzyme activities, microbial CUE, and C:N ratio. In this context, warming reduced SOC stability as evidenced by up to 31.8% greater Q10 (1.45) at warm sites than at cold sites (1.10) owing to less richness of microbial communities and lower microbial CUE. The relatively lower pH and labile organic C value restricted the development of microbial richness, and decreased C- and N-related enzyme activities and a lower C:N ratio resulted in microbial CUE reduction. Additionally, N fertilization altered the C:N imbalance and enhanced SOC stability in vegetable soils, exhibiting an increase of Q10 values, particularly of great importance in warm sites. Collectively, our findings emphasize the importance of the microbial mechanism and resource stoichiometry in predicting variations in Q10 and fluctuations in SOC stability, and provide theoretical advice on improving management policies in the context of warming and fertilization from vegetable soils.


Assuntos
Carbono , Solo , Carbono/química , China , Nitrogênio/análise , Solo/química , Microbiologia do Solo , Verduras
3.
J Environ Manage ; 313: 114972, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35378346

RESUMO

Biochar is widely used for soil carbon sequestration and fertility improvement. However, the effects of biochar interacted with nitrogen (N) on the mineralization of soil organic carbon (SOC) and microbial community have not been thoroughly understood, particularly no reports have been published on the long term effects of biochar in vegetable field. Here, we examined soil properties, SOC mineralization and microbial community affecting by biochar (0, 20 and 40 t ha-1; C0, C1 and C2, respectively), N (0 or 240 t ha-1; N0 or N1, respectively) and their interaction in a greenhouse vegetable field. Results indicated that biochar addition increased soil pH, SOC, recalcitrant C pool, especially for the 40 t ha-1 treatment. Biochar addition generally decreased soil C-cycling enzyme activity while increasing N and P-cycling enzyme and oxidase activities. Biochar combined with N addition reduced SOC mineralization rate and metabolic quotient (qCO2) by 10.2-22.0% and 6.85-30.4%, respectively, across 15-35 °C and the temperature sensitivity (Q10) by 0.96-4.70%, except for the N1C2 at 25-35 °C. Apparent changes in bacterial alpha diversity and community structures were observed among treatments. Besides, biochar mixed with N application significantly enhanced the relative abundance of Proteobacteria and decreased Acidobacteria, while did not result in significant differences in fungal diversity and community composition. Redundancy analysis indicated that the microbial community composition shifts induced by the interaction between N and biochar were attributed to the changes in soil chemical properties, such as pH and SOC. Overall, the combination of biochar and N fertilizer is recommended to improve SOC sequestration potential and regulate bacterial community diversity and composition in vegetable field for sustainable intensification.


Assuntos
Microbiota , Solo , Bactérias , Carbono/análise , Sequestro de Carbono , Carvão Vegetal/química , Solo/química , Microbiologia do Solo , Temperatura , Verduras
4.
Sci Total Environ ; 820: 153294, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35066034

RESUMO

Multiple dry-rewetting (DRW) cycles occur in intensively managed vegetable fields due to frequent tillage and irrigation. Soil nitrogen (N) cycling depends on the resistance and resilience of related microbial populations to DRW cycles, which could be closely related to soil nutrient status. However, the linkage of N-cycling microbial resistance and resilience and soil nutrient stoichiometry remains unknown in vegetable field. Here, we established four fertilization treatments in a four-year greenhouse vegetable field: no N fertilization, synthesized N fertilization, substituting 50% of chemical N with organic fertilizer or biofertilizer. Then, we set up an 85-day DRW-cycling incubation at 15, 25 and 35 °C including a 55-day fluctuating moisture for microbial resistance and then a 30-day constant moisture for microbial resilience. The results showed that microbial resistance was high (resistance index = 0.87- 0.99) in response to DRW cycles, but microbial resilience was generally low (resilience index = -0.36- 0.76), especially in 50% organic substitution or 15 °C. N-cycling microbes showed an important trade-off between their resistance and resilience to DRW cycles. Furthermore, most treatments showed microbial carbon limitation and N abundance during DRW cycles and recovered gradually to the undisturbed state. Microbial resistance was significantly related to the soil nutrient stoichiometry of carbon, N and phosphorus, while microbial resilience was mainly correlated with carbon-related indicators. In conclusion, N-cycling microbes presented good stability with oligotrophic strategy to frequent DRW cycles, which was linked to not only the historical legacy effect of DRW cycles but also soil nutrient stoichiometry in the vegetable field.


Assuntos
Nitrogênio , Solo , Carbono , Fertilização , Nitrogênio/análise , Nutrientes , Fósforo , Microbiologia do Solo , Temperatura , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...